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Minimum-Phase Behavior of Random Media

HARRISON E. ROWE, FELLOW, IEEE, AND D. T. YOUNG, MEMBER,

Abstract—Wegive two different sufficient conditions for the trans-
fer function of two-mode random media to be minimum phase. The

second of these results states that the signal transfer function will
be minimum phase if the spurious mode is dissipated faster than it is

coupled from the signal mode, in a certain sense. Two illustrative
examples are given. These two conditions cannot be greatly im-
proved.

1. INTRODUCTION

TRANSMISSION MEDIA with coupled spurious

modes have been of interest in waveguide and fiber

optic systems. Here we are concerned with a two-mode

system, in which signal and spurious modes propagate in

the forward direction. Previous studies [1]–[3] have given

some exact, approximate, and statistical properties of the

signal-mode transfer function of such a system.
It is of interest to know whether such a transfer func-

tion is minimum phase. Recall [4] that a minimum-phase

transfer function has no zeros in the right-half of the com-

plex frequency plane; and hence the phase may be uniquely

determined from the attenuation (log of the magnitude)

of the transfer function. We present here sufficient con-

ditions for the signal transfer function to be minimum

phase, and show that they cannot be greatly improved.

Consider the coupled line equations

10’(2) = – r,],(z) + jc(z)l,(z)

11’ (z) = jC(Z)IO(Z) – rlll(~) (1)

describing a system of two coupled modes traveling in the

+Z direction. I’; and r, are the complex propagation

constants, with real and imaginary parts

r~ ~ ao + j~o, rl = al + j~l (2)

and ‘ denotes differentiation with respect to z. 10(z) and

11(z) are coupled wave amplitudes representing signal

and spurious modes, respectively, each having time de-

pendence exp (j27rft). c(z) is a real coupling coefficient

having arbitrary functional dependence on distance z;

c(z) is taken as a random process with known statistics

in some problems.

We assume initial conditions

10(0) = 1, l,(o) = 0. (3)

Thus, a unit signal is injected in the desired mode at z = O;
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the output 10(z) is then the

function for length z of guide.

IEEE

complex-signal transfer

The following normalization is convenient Cl]:

10(.z) = exp ( – r,z) .GO(z)

II(z) = exp (– I’lz) .Gl(z) (4)

AI’c I’o-I’l=Aa+jAfl (5)

Aa=ao —al

Afl = do – @l. (6)

Then (1) becomes

Go’(z) = jc(z) exp (AI’z) .G,(z)

G’/(z) = jc(z) exp ( –AI’z) .Go(z) (7)

governing the normalized transfer functions GO and G1.

The initial conditions (3) become

GO(O) = 1, G,(O) = O. (8)

Now let GO(AI’) be the solution to (7) and (8) for some

fixed guide length z and coupling function c (.z). Then the

normalized-signal transfer function for a guide with par-

ticular values of attenuation and phase constants is found

by substituting (6) for the real and imaginary parts of the

complex parameter Ar of (5).

The physical applications of these equations have been

discussed in several places, in particular in [1, sec. I],

which gives earlier pertinent references. The following

facts [1, sees. II and, III and appendix I], are of direct

interest here. “

1) The signal mode is assumed to have lower heat loss

and greater group velocity than the spurious mode

Aa=aO—al~O (9)

(@df) A~ <0. (lo)

2) Over narrow bands of interest we neglect the fre-

quency dependence of Aa and c(z), and assume AD varies

approximately linearly with frequency ~ (with negative

slope).

Item 2) suggests the substitution

–AD = 1 (11)

where h is normalized angular frequency, since

h m constant 92rf (12)

over a suitably narrow band. Introduce the complex fre-

quency
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S=cr+,jh (13)

as with the LaPlace transform. Then from [1, sees. IV and

V and appendix II]

GO(Aa – s) = G,(Aa – rJ – jx) (14)

gives the behavior of the transfer function GOthroughout

the complex frequency plane, where GO(AI’) is the solution

to (7) and (8) for some fixed guide length.

Therefore let us relate the two complex Al? and s

planes by

A17=Aa-s (15)

where ila is the particular fixed value of differential

attenuation under consideration. The right-half s plane,

U>o (lfia)

corresponds to the region

ReAr’<As=-lAal (16b)

in the A r plane. The imaginary axis in the s plane

~=() s=j~ (17a)

corresponds to the vertical line

A17=Aa-ji=Aa+jAb (17b)

in the left-half Ar plane, and GOevaluated at points along

(17b) gives the transfer function for sinusoidal inputs, the

only values of direct physical interest.

II. RESULTS

A number of general properties of GOwere given in [1,

sec. IV] for aibitrary c(z), valid without perturbation or

any other approximations. Of particular interest here, GO

is analytic for all finite AI’ (and hence for all finite s) ; i.e.,

Go has no poles or other singularities anywhere in the

finite A IT or s planes. However, [1] contained no infor-

mation about zeros of Go. Such information is contained in

the following results.

1) If

f
“ Ic(x) [ dX < cosh-’2 % 1.317 (18)

o

then all zeros of GOlie in the region of the s plane

ueRes<Aa~O. (19)

GOis consequently minimum phase, since all zeros lie in the
left-half s plane.

2) If

forO~~~z,Aa~O (20)

then GOis minimum phase, i.e., all zeros of GOlie in the

left-half s plane

u= Res <O. (21)

III. SERIES SOLUTIONS AND MINIMUM

PHASE

A general series solution for Go of (7) and (8), analytic

for all finite AI’, is given in [1 ] and [2]. From [1, appendix

II]

Go(AI’) = 1 + ~ (–l)”Go(n)(AI’) (22)

where the

I Go(n)(AI’)

m=l

xms are hour ied by

[< /-’I C(*)
LJO

2n

dx
u

(2n) !, Re AI’ S 0.

(23)

The precise form for Go(n)(AI. V,and bounds for Re AI’ >

0, are given in [1], but are not of interest here. The Go(.) of

(22) are in general complex. Then

Go(AI’) # O

if

I ~:, (–l)fiGo(.)(Ar)l <1. (24)

Using (23)

I ~ (–l)nGo(n)(Ar)l < ~ I Go(n)(@l 5 ~
n==l ~=1 n= 1

.[[,Wx~/ (2n)!=cosh[(lc(z), dz]

–1, Re AI’ s O. (25)

Therefore Go(A17) has no zeros in the left-half Ar plane if

cosh[~,c(x),dz]<2

(26)

or

/
‘ I C(X) I dx < cosh-’2 m 1.317. (27)

o

By (16), the condition of (27) and (18) excludes zeros

from the right-half s plane, guaranteeing that Go is mini-

mum phase. Moreover, zeros are excluded from a strip
extending from Re s = O to Re s = Aa < 0 in the left-

half s plane, as stated in (19).

Define the complex signal loss as ~2]

A(AI’) = – in Go(AI’). (28)

A series solution for A was given in [2]. In the region

ReAI’<A. <0 (29)

this series converges, and hence A is analytic, if the con-

dition
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/

r ti-1 ‘/’%0455()lc(z)lexp[Aa({ – z)]dz ~ ~ . ,
0

for 05~S.z,AaSO (30)

given in (20), is satisfied. Since poles of A correspond to

zeros and poles of GO, and since GO has no finite poles,

absence of poles for A implies absence of zeros for GO.

From (29) and (16), the condition of (20) or (30) ex-
cludes zeros from the right-half s plane, as stated in (21),

guarantees GOto be minimum phase.

IV. EXAMPLES

Consider first two equal discrete-mode converters

separated by a length z of ideal guide

c(z) = C[a(z) + 8(z – z)]. (31)

The output quantities of (1) for the inputs (3) are given

by [1, sec. VI] as

[1
Io(z+)

I,(z+)

‘[::::lr(:roz)exP:”l’)l

“[::‘::1[1 (32)

Then

10(z+) = exp (– roz) COS2C – exp (– rlz) sin2 C.

(33)

From (4), for length z+

Go(A”) = COS2C – exp (AEz) sinz C. (34)

From (15)

Go(Aa – s) = COS2C – exp [(As – S)Z] sin2 C. (35)

Clearly, there are no finite poles. Zeros occur for

exp [(s — Aa).z] = tan2 C. (36)

Substituting (13), zeros occur at

AZ = integer”2~ (37)

and

exp [(u — Aa)z] = tanz C. (38)

Recalling (9), zeros are confined to the region

v<AasO (39)

in the present special case if

tan’ C < 1, I C I < (7r/4) % 0.785. (40)

If < is redated by = in (40), zeros appear along the

vertical line a = Aa 50 in the s plane; therefore, the

numerical factor on the right sides of (40) cannot be in-

creased if zeros are restricted by (39) for c(z) of (31).

The general condition of (18) applied to the present case

requires

cosh–l 2
ICI< z wO.658 (41)

this general result is consequently a little conservative

when applied to the present special case.

Consider, finally, constant coupling between signal and

spurious modes

c(z) = co, (42)

In this case 1,1of (1) is given by [3, sec. 2.3.3] as

(,‘ ro+rl
10(Z) = exp – z

)

1

z “K+ – K.

. {–K_exp [( A”/2)z <] + K+exp [–(Ar/2)z till

(43)

where

14, <
K& = –j —— K+K. = –1,

2co/Ar ‘

d
K+– K.=–j2—

2co/Ar
(44)

(45)

Consequently, from (4), for length z

Go(A”) = exp [( AI’/2).z].
1

K+ – K._

. {–K-exp [( A”/2)z <] + K+ exp [–(Ar/2)z W}.

(46)

Now GO appears to have branch points at Ar = &2c0.

However, reversing the sign of V’ in (46) leaves this

expression unaltered, so there are in fact no branch points.

This is in accord with the general result quoted at the

beginning of Section II, that GO is analytic for all finite
A“ for arbitrary coupling c(z) [1].

The zeros of the normalized transfer function GO are

given from (44) –(46) by solving

“+ ~)exp(-:zb-‘)ex+”z+
.

h“
o.

(47)

We first explore the exceptional points given by the zeros

of the denominator
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AI’ = &2co. (48)

Taking limitsin (46)

G,(Ar= &2c,) =[1– (Ar/2)~] eXp[(Ar/2)Z]. (49)

Since z >0, G, cannot have a zero for Ar = –2 I c, 1. G,

has a zero for AI’ = +2 I COI if and only if I COI z = 1.

The remaining zeros of GO are given by setting the nu-

merator of (47) equal to O

{1 + [1 – (2c,/Ar)’]’/’}’

(2c,/Ar)’ ‘xp{-Arz[l-H’r}

. 1, Ar # +2 / c, 1. (50)

We are free to replace c, by I co [ throughout (50).

Summarizing, for constant coupling (42) the zeros of

the transfer function are given by solving

{2%+[(%Y-lrrex”{ -2c’lz

“[( H-117=’J ‘r#+21c01 ’51)

for AI’, and additionally

AI’=21cOl ifandonlyif Ic’1.z=l. (52)

Recalling (15), the transformation to the complex fre-

quency plane is given by

Ar=Aa–s (53)

Investigation of (51) –(53) in the Appendix yields the

following two results on transfer-function zeros for con-

stant coupling (42):

c(z) = c’

1) If

[c’ / z < (7r/2) s 1.571 (54)

then all zeros of Go lie in the region of the s plane

G, is consequently minimum phase, since all zeros lie in the

left-half s plane.

2) If

lco150.51 Aal (56)

then Go is minimum phase, i.e., all zeros of Go lie in the

left-half s plane

~=R,es<o. (57)

The numerical factors on the right sides of (54) and (56)

cannot be increased for constant coupling if zeros are re-

stricted by (55) and (57), respectively; this follows from

the special case – Afi = A = O, investigated at the end of

the Appendix. The general results of (18) and (19) and

(20) and (21) applied to the present case replace the

numerical factors 1.571 of (54) by 1.317, 0.5 of (56) by

0.455; these general results are again a little conservative

when applied to the present special case.

V. DISCUSSION

The conditions of (18) and (20) are sufficient, for

arbitrary coupling c(z), to exclude transfer-function zeros

from the right half of the complex frequency plane, and so

guarantee the transfer function to be minimum phase.

When I Aa I >0, the condition (18) is stronger than re-

quired for minimum-phase behavior, excluding transfer-

function zeros from a vertical strip in the left-half plane as

well.

The condition of (18) permits larger coupling c(x)

than that of (20) for Aa = O; for large enough I Aa [ z

and most reasonable c(z), the reverse is true. If a given

c(z) satisfies both constraints (18) and (20), (19) pro-

vides a stronger constraint on the transfer-function zeros

than (21). In a rough sense, (20) and (21) state that the

transfer function is minimum phase if the spurious mode

is dissipated faster than it is coupled from the signal mode.

The examples of Section IV show that little improve-

ment is possible in the general results of Section II.

APPENDIX

For convenience introduce the notation

w=%
21 co/”

Then (51 ) and (52) become, respectively,

[W+ (W’ – 1) ’1’]’exp [–2 I co I Z(W2 –

(58)

1)1/2]

= 1, w# +1 (59)

W=l ifand onlyif Icolz=l. (60)

From (15) or (53) and (13)

W=-$+-&-j&. (61)

Then we have the following correspondences:

a> —IAal SRe W<O

lAal
u> O* ReW<— —

2[co1”
(62)

To investigate the solutions of (59) we introduce for

convenience the auxiliary complex planes

x ~ (JJn _ 1)1/2

Y= w+ (W2– 1)1/2, (63)

X and Y are double-valued. We render them single-valued

for our present purposes by making a branch cut from – 1

to 1 in the W plane, choosing the branches by requiring

that
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X+W and Y~2W as IWI-+CO. (64)

The arbitrariness of this choice is unimportant for what

follows.1 Then (59) becomes

Y = +exp (I COIZX), w # +1. (65)

Fig. 1 shows corresponding contours in the W, X, and Y

planes. The shaded regions correspond, respectively, to:

1) ReW <O, ImW #O, and –m<W<–l; 2)

Re X < O; 3) I Y [ >1, Re Y <0. It is clear that (65)

has no solution here. Consequently, (59) has no solutions

in the left-half W plane with the possible exception of the

p@ion of the real axis – 1< W <0.
Now (65) and hence (59) clearly have no solutions when

Re W S – 1. From (62), if

lAal>l

21COI– ‘
lc0150.51Aal (66)

the transfer-function zeros must lie in the left-halfs plane,

as stated in (56) and (57).

Next let us see what additional conditions are necessary

to exclude solutions to (65), and hence (59), from the

portion of the negative real axis – 1 < W ~ O and from

the imaginary axis Re W = O, thereby confining transfer-

function zeros to u < – I Aa I by (62). The region under

investigation corresponds to the imaginary X axis, ex-

cluding the origin; therefore, set

x = jx, X+o. (67)

Then (65) becomes

I

exp {.j[m –sin–lx]}, O< Izl S 1

+exp(jlcolzz)=

jx[l + (1 – l/x’)l@], 1< I x 1.

(68)

Solutions to (68) are forbidden if

/co I z < (7r/2) (69)

thus yielding (54) and (55).

Finally, let us investigate the boundary cases to demon-

strate that our bounds (54) and (56) on the coupling

coefficient cannot be relaxed. For constant coupling,

consider the speeial case

–A~=i=O. (70)

First, note that (68) has a solution if

I c, I z = (m/2) (71)

at

X=l (72)

by (67) an~l (63) this corresponds to

1Because (59) is single-valued.

415

w x Y

—

Fig. 1. Contours in three complex planes.

W=o (73)

or by (61)

u—Aa=O. (74)

Hence replacing < by = in (54) results in an s-plane zero

at

Q=Aa A==o (75)

showing that the numerical factor on the right side of (54)

cannot be increased with zeros restricted by (55). Stated

differently, evaluate (46) at the origin of the AI’ plane, to

yield

GO(AII = O) = cos COZ. (76)

Clearly, this is zero if I COI z = 7r/2, and from (13) and

(15) or (53) the corresponding zero in the s plane is as

given previously in (75). For a second example, Iet

I c, / 2> (T/2)

then (68) has a solution for

O<x <l.

By (63) and (67)

w = – (1 – Z2)112

(78) yields

–l<w <o.

From (61) and (79)

Now we can make I COI z large enough to make (1 -

as close to 1 as we please. Hence if

we can make I co [ z large enough to render

u
—-->0
2 [co/

by (82). Hence replacing g by > in
s-plane zero in the right-half plane

U>o A=o

(77)

(78)

(79)

(80)

(81)

*2) 1/2

(82)

(83)

(56) can result in an

(84)
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Statistical Coupled Equations in Losdess Optical Fibers

BRUNO CROSIGNANI, BENEDETTO DAINO, AND PAOLO DI PORTO

Abstract—The problem of deriving sets of statistical coupled equa-

tions for the secorid and fourth moments of the mode amplitudes in a

fiber with mode coupling is considered, starting from the deter-

ministic coupled wave equations describing an electromagnetic field

propagating in a lossless fiber. Our results extend the work of Mar-
cuse, and, in particular, allow one to deduce sets of equations for
quantities which describe me cross correlation between different
modes. F&thermore, we obtain new’ results regarding the variances

and cross correlations of the power in the modes (fourth-order amp-
litude statistics).’

I. INTRODUCTION

AN electromagnetic wave propagating in an optical

fiber can be described by means of a set of coupled

differential equations for the amplitudes of the modes

supported by the guide. The coupling terms are, in par-

ticular, associated with the deviations of the fiber from

the ideal structure pertaining to a regular geometrical

form and refractive index distribution. In many situations,

these imperfections are distributed in a complicated fash-

ion along the guide, so that it is difficult to determine the

spatial behavior of the coefficients of the fundamental

equations for a given fiber, and, also, if they are known,

i! is practically impossible to deduce an analytical solu-

tlon.

In order to circumvent these difficulties, it is useful to
introduce a statistical ensemble of fibers possessing small

random deviations from a common ideal structure [1],

[2]. The problem is then to obtain simple equations for

the ensemble averages of quantities describing either the

Manuscript received June 18, 1974; revised November 27, 1974.
B. Crosignani and P. Di Porto are with the Laser Laboratory,

Fondazione Ugo Bordoni, I. S.P. T., Rome, Italy, and the Department
of Electrical Engineering, University of Rome, Rome, Italy.

B. Daino is with the Laser and optoelectronic Division,
Fondazione Ugo Bordoni, I. S.P. T., Rome, Italy.

evolution of each propagation mode, or the interaction

between different modes. The perturbative approach [1],

[2] allows one to derive a closed system of equations for

the ensemble averages of the powers of the coupled modes,

also taking into account losses due to small coupling with

radiation modes.1

The behavior of the variance of the power has also been

investigated [2], in the limit of a large number of coupled

modes, thus enabling one to give an estimate of the ap-

plicability of the results of the statistical theory to a s;ngle

fiber.

In this paper, we wish to introduce an analytical ap-

proach, which slightly improves the procedure followed

in [1] and [2], and allows us to obtain, for a lossless

optical fiber, in a stI aightforward way, beyond the equa-

tions for the powers, closed systems of coupled equations

for ensemble averages of products of amplitudes of differ-

ent modes. Furthermore, we obtain a closed system of

equations connecting the averages of the power squares

to those of the products of different mode powers.

As a particular application, we estimate the normalized

variance of the asymptotic power distribution, which

turns out to depend on the number of coupled modes.

II. COUPLED POWER EQUATIONS

We start from the relevant deterministic wave equa-

tions valid for the single fiber, which couple forward-

traveling guided modes and are obtained from the general

theory [4] by neglecting coupling with backward-travel-

ing modes and radiation modes. For a steady-state situ-

ation, they read

1For good sources on the treatment of stochastic equations, see
[3].


