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Minimum-Phase Behavior of Random Media

HARRISON E. ROWE, reLiow, 1EE, AND D. T. YOUNG, MEMBER, IEEE

Abstract~—We give two different sufficient conditions for the trans-
fer function of two-mode random media to be minimum phase. The
second of these results states that the signal transfer function will
be minimum phase if the spurious mode is dissipated faster than it is
coupled from the signal mode, in a certain sense. Two illustrative
examples are given. These two conditions cannof be greatly im-
proved.

I. INTRODUCTION

RANSMISSION MEDIA with coupled spurious

modes have been of interest in waveguide and fiber
optic systems. Here we are concerned with a two-mode
system, in which signal and spurious modes propagate in
the forward direction. Previous studies [ 1]-[3] have given
some exact, approximate, and statistical properties of the
signal-mode transfer function of such a system.

It is of interest to know whether such a transfer funec-
tion is minimum phase. Recall [4] that a minimum-phase
transfer function has no zeros in the right-half of the com-
plex frequency plane; and hence the phase may be uniquely
determined from the attenuation (log of the magnitude)
of the transfer function. We present here sufficient con-
ditions for the signal transfer function to be minimum
phase, and show that they cannot be greatly improved.

Consider the coupled line equations

If(2) = —=Tolo(2) + jc(2)I1(2)

Iy(2) = je(2)Io(z) — Tul1(2) (1)

deseribing a system of two coupled modes traveling in the
4z direction. T'; and T, are the complex propagation
constants, with real and imaginary parts

Ty = ag + 760, I'i=a + 7/ (2)

and ’ denotes differentiation with respect to 2. Io(z) and
I,(2) are coupled wave amplitudes representing signal
and spurious modes, respectively, each having time de-
pendence exp (j2rft). ¢(z) is a real coupling coefficient
having arbitrary functional dependence on distance z;
c(z) is taken as a random process with known statistics
in some problems.
We assume initial conditions

I,(0) =1, 1,(0) = 0. 3)
Thus, a unit signal is injected in the desired mode at z = 0;
Manuseript received April 12, 1974; revised November 14, 1974.

H. E. Rowe is with Bell Laboratories, Holmdel, N. J. 07733.
D. T. Young is with Bell Laboratories, Murray Hili, N. J. 07974.

the output Io(z) is then the complex-signal transfer
funetion for length 2z of guide.
The following normalization is convenient [17]:

Iy(2) = exp (—T2) +Go(2)

I1(z) = exp (—T'2) Gi(2) (4)
AT =Ty — Ty = Aa + jAB (5)
Ao = ap— a1
AB = By — B (6)
Then (1) becomes
G (2) = jo(2) exp (AT2)-Ga(2)
Gi'(2) = je(2) exp (—AT2) -Gy(2) (7

governing the normalized transfer funections G, and Gi.
The initial conditions (3) become

Go(0) =1,  Gi(0) = 0. (8)

Now let Gyh(AT') be the solution to (7) and (8) for some
fixed guide length 2 and coupling funetion ¢(z). Then the
normalized-signal transfer function for a guide with par-
ticular values of attenuation and phase constants is found
by substituting (6) for the real and imaginary parts of the
complex parameter AT of (5).

The physical applications of these equations have been
discussed in several places, in particular in [1, sec. I],
which gives earlier pertinent references. The following
facts [1, secs. IT and III and appendix I, are of direct
interest here. ° :

1) The signal mode is agsumed to have lower heat loss
and greater group velocity than the spurious mode

Aa=ao—a1§0 (9)
(d/df)AB < 0. (10)

2) Over narrow bands of interest we neglect the fre-
quency dependence of Aax and ¢(2), and assume AS varies
approximately linearly with frequency f (with negative
slope).

Item 2) suggests the substitution

—A8 =)\ (11)
where A is normalized angular frequency, since
~ constant«2zf (12)

over a suitably narrow band. Introduce the complex fre-
quency
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s=o+4jr (13)

as with the LaPlace transform. Then from [1, sees. IV and
V and appendix IT]

G()(AO( - 8) = Go(Aa -0 —j)\) (14)

gives the behavior of the transfer function G, throughout
the complex frequency plane, where Gy,(AT') is the solution
to (7) and (8) for some fixed guide length.

Therefore let us relate the two complex AT and s

planes by
AT = Aa — s (15)

where Aa is the particular fixed value of differential
attenuation under consideration. The right-half s plane,

c>0 (16a)
corresponds to the region
Re AT < Aa = — | Aa| (16b)
in the AT plane. The imaginary axis in the s plane
c=0 s=7A (17a)
corresponds to the vertical line
AT = Aa — j\ = Da + jAB (17b)

in the ief’q—half AT plane, and G, evaluated at points along
(17b) gives the transfer function for sinusoidal inputs, the
only values of direct physical interest.

II. RESULTS

A number of general properties of G, were given in [1,
see. IV] for airbitrary c(z), valid without perturbation or
any other approximations. Of particular interest here, G,
is analytic for all finite AT (and hence for all finite s) ; i.e.,
Gy has no poles or other singularities anywhere in the
finite AT or s planes. However, [1] contained no infor-
mation about zeros of (. Such information is contained in
the following results.

1) If _
/ le(2)| dz < cosh— 2 &% 1.317 (18)
0
then all zeros of G, lie in the region of the s plane
c=Res< Aa X0 (19)

Gy is consequently minimum phase, since all zeros lie in the
left-half s plane.
2) If

/r [c(z)] exp [Aa(¢ — o) Jdz < <\/-2- — 1>1/2 ~ 0.455,
0 2

for0 <<z A<0 (20)

then Gy is minimum phase, i.e., all zeros of G, lie in the
left-half s plane

= Res <0 21
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III. SERIES SOLUTIONS AND MINIMUM
PHASE

A general series solution for G of (7) and (8), analytic
for all finite AT, is given in [1] and [27]. From [1, appendix
]

Gr(AT) = 1 + 3 (—1)"Goon (AT)

ne=1

(22)
where the terms are bounded by

Guoan) < | [ le@la] [ @my mear <o

(23)

The precise form for Gy (ATY), and bounds for Re AT >
0, are given in [[17, but are not of interest here. The Gy, of
(22) are in general complex. Then

Gy(AT) #0
if
|3 (—1)"Gow (AT)] < 1. (24)
Using (23)
|2 (=16 (AD)] < X | o (AT)| < 5

. ’ d " 2n)! = h ’ d

[/0 Fe(x)] x] /(n) cos Ua | ()] a:]

-1, Re AT < 0. (25)

Therefore Go(AT') has no zeros in the left-half AT plane if

cosh [/: [ e(x)] dx] <2 26

or
/ | ¢(x)| de < cosh™ 2 =3 1.317. 27)
o

By (16), the condition of (27) and (18) excludes zeros

from the right-half s plane, guaranteeing that G, is mini-

mum phase. Moreover, zeros are excluded from a strip

extending from Res = 0 to Res = Ao £ 0 in the left-

half s plane, as stated in (19).
Define the complex signal loss as [2]
A(AT) = — In Gy(AT). (28)
A series solution for A was given in [27]. In the region
ReAT < Aa <0 (29)

this series converges, and hence A is analytic, if the con-
dition



ROWE AND YOUNG: BEHAVIOR OF RANDOM MEDIA

4 —
[ Vel exp Lt — 3o < (2
0

12
> ~ 0.455,

for 0<¢<z2Aa<0 (30)

given in (20), is satisfied. Since poles of A correspond to
zeros and poles of Gy, and since Gy has no finite poles,
absence of poles for A implies absence of zeros for Gy.
From (29) and (16), the condition of (20) or (30) ex-
cludes zeros from the right-half s plane, as stated in (21),
guarantees G, to be minimum phase.

IV. EXAMPLES

Consider first two equal discrete-mode converters
separated by a length z of ideal guide

c(z) = Ca(z) + 8(z —2) 1. (31)

The output quantities of (1) for the inputs (3) are given
by [1, sec. VI] as

[Io(2+)j|
Il(z—i—)

cosC jsin C| [exp (—Ty2) 0
jsinC  cos C 0 exp (—TI'2)

[ cos C jsin C] [1]
. . (32)
jsinC cosC | |O
Then
Io(z+) = exp (—T@) cos? C — exp (—T) sin? C.
(33)
From (4), for length 24
Go(AT) = cos? C — exp (AT%) sin? C. (34)
From (15)
Go(Aa — s) = cos? C — exp [ (Ao — s)2]sin? C. (35)
Clearly, there are no finite poles. Zeros occur for
exp [ (s — Aa)z] = tan® C. (36)
Substituting (13), zeros occur at
Az = integer2n 37N
and
exp [ (¢ — Aa)z] = tan? C. (38)
Recalling (9), zeros are confined to the region
e < Ax<0 (39)
in the present special case if
tan?C <1, | C|< (x/4) ~0.785.  (40)

If < is replaced by = in (40), zeros appear along the
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vertical line ¢ = Aa < 0 in the s plane; therefore, the
numerical factor on the right sides of (40) cannot be in-
creased if zeros are restricted by (39) for c(z) of (31).
The general condition of (18) applied to the present case
requires

cosh™12

o] < ~ 0.658 (41)

this general result is consequently a little conservative
when applied to the present special case.

Consider, finally, constant coupling between signal and
spurious modes

c(z) = ¢ (42)
In this case I, of (1) is given by [3, sec. 2.3.3] as
_ ' To+Tr ) _ 1
L(z) = exp ( 2 z) K, — K_
«{—K_exp [(AT/2)2v/] + K, exp [— (AT/2)z V]}
(43)
where
_ =V -
Ky 2¢/AT ’ K. K- L
R
K,— K = —j2 Se/AT (44)
271/2
v=[-CT]" (45)
Consequently, from (4), for length 2
Go(AT) = exp [(AP/Z)z]-Iz—%—E:
«{—K_exp [(AT/2)z /] + Ky exp [—(AT/2)z vV}
(46)

Now G, appears to have branch points at AT' = +2¢,.
However, reversing the sign of +/ in (46) leaves this
expression unaltered, so there are in fact no branch points.
This is in accord with the general result quoted at the
beginning of Section II, that Gy is analytic for all finite
AT for arbitrary coupling ¢(z) [1]. ’

The zeros of the normalized transfer function G, are
given from (44)—(46) by solving
(14 +)exp (— %z \/> — (1 — +/)exp (%‘z \/)

24/

= 0.

(47)

We first explore the exceptional points given by the zeros
of the denominator
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AT = +2¢,. (48)
Taking limits in (46)

Go(AT = £2¢)) = [1 — (AT/2)z] exp [(AT/2)2]. (49)
Since z > 0, Gy cannot have a zero for AT = —2| ¢ |. Gy
has a zero for AT = 42| ¢ | if and only if | ¢ |2z = 1.
The remaining zeros of G, are given by setting the nu-
merator of (47) equal to 0

L Gy (2]

=1, AT = +£2 ¢y |. (50)

We are free to replace ¢, by | ¢ | throughout (50).
Summarizing, for constant coupling (42) the zeros of
the transfer function are given by solving

et LG =1 T oo f 1o
AT

[(2 > l)2 - 1]1/2} =1, AT +2|¢]| (51)

for AT, and additionally
AT = 2| ¢ | if and only if

Recalling (15), the transformation to the complex fre-
quency plane is given by

AT = Aa — s.

leolz=1. (562)

(53)

Investigation of (51)—(53) in the Appendix yields the
following two results on transfer-function zeros for con-
stant coupling (42) :

@) = a
1) If
a2 < (w/2) =~ 1.571 (54)
then all zeros of Gy lie in the region of the s plane
c=Res<Aa X 0. (55)

G, is consequently minimum phase, since all zeros lie in the
left-half s plane.
2) If

leo] < 0.5] Aa | (56)

then Gy is minimum phase, i.e., all zeros of Gy lie in the
left-half s plane

= Res<0. (57)

The numerical factors on the right sides of (54) and (56)
cannot be increased for constant coupling if zeros are re-
stricted by (565) and (57), respectively; this follows from
the special case —AB = A = 0, investigated at the end of
the Appendix. The general results of (18) and (19) and
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(20) and (21) applied to the present case replace the
numerical factors 1.571 of (54) by 1.317, 0.5 of (56) by
0.455; these general results are again a little conservative
when applied to the present special case.

V. DISCUSSION

The conditions of (18) and (20) are sufficient, for
arbitrary coupling ¢(xz), to exclude transfer-function zeros
from the right half of the complex frequency plane, and so
guarantee the transfer function to be minimum phase.
When | Ae | > 0, the condition (18) is stronger than re-
quired for minimum-phase behavior, excluding transfer-
function zeros from a vertical strip in the left-half plane as
well.

The condition of (18) permits larger coupling c(z)
than that of (20) for Ae = 0; for large enough | Ax |z
and most reasonable ¢(z), the reverse is true. If a given
c(x) satisfies both constraints (18) and (20), (19) pro-
vides a stronger constraint on the transfer-function zeros
than (21). In a rough sense, (20) and (21) state that the
transfer function is minimum phase if the spurious mode
is dissipated faster than it is coupled from the signal mode.

The examples of Section IV show that little improve-
ment is possible in the general results of Section II.

APPENDIX
For convenience introduee the notation
AT
W= . 58
2 | Co ] ( )
Then (51) and (52) become, respectively,
LW+ (W2 — D) P exp [—2 ] ¢ | 2(W? — 1)42]
=1, W= £1 (59)
W=1 ifandonlyif |e|z=1. (60)
From (15) or (53) and (13)
| Ax | T . A
W= - — — . 61
2(al  2lal '2]a| o
Then we have the following correspondences:
c> —|Aa]©Re W <0
A
o> 00 ReW < — 22l (62)
2 i Cy I

To investigate the solutions of (59) we introduce for
convenience the auxiliary complex planes

X = (W2 — 1)u
Y =W+ (W2 — 1)t (63)

X and Y are double-valued. We render them single-valued
for our present purposes by making a branch cut from —1
to 1 in the W plane, choosing the branches by requiring
that
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X~W and Y ~2W as |W|—w. (64)

The arbitrariness of this choice is unimportant for what
follows.! Then (59) becomes

Y = +exp (|| 2X), W = £1. (65)

Fig. 1 shows corresponding contours in the W, X, and Y
planes. The shaded regions correspond, respectively, to:
1) ReW <0, ImWs#0, and —oo < W < —1; 2)
ReX <0;3) |Y|>1, ReY < 0. It is clear that (65)
has no solution here. Consequently, (59) has no solutions
in the left-half W plane with the possible exception of the
portion of the real axis —1 < W < 0.

Now (65) and henee (59) clearly have no solutions when
Re W < — 1. From (62), if

| Ac |

.._—.Zl,

<0.5] A
oy [e] <0.5]Ax|

(66)
the transfer-function zeros must lie in the left-half s plane,
as stated in (56) and (57).

Next let us see what additional conditions are necessary
to exclude solutions to (65), and hence (59), from the
portion of the negative real axis — 1 < W < 0 and from
the imaginary axis Re W = 0, thereby confining transfer-
function zeros to ¢ < — | Aa | by (62). The region under
investigation corresponds to the imaginary X axis, ex-
cluding the origin; therefore, set :

X = gz, x #0. (67)
Then (65) becomes
exp {jlr —sinz]}, 0<|2]<L1
+ exp (7] co|2x) =
ja[14+ (1 —1/23)"], 1 < |z |.
(68)
Solutions to (68) are forbidden if
[eolz < (m/2) (69)

thus yielding (54) and (55).

Finally, let us investigate the boundary cases to demon-
strate that our bounds (54) and (56) on the coupling
coefficient cannot be relaxed. For constant coupling,
consider the special case

— A =N=0. (70)-
First, note that (68) has a solution if
|eo|z = (r/2) (71)
at
x =1 (72)

by (67) and (63) this corresponds to

1 Because (59) is single-valued.
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Fig. 1. Contours in three complex planes.
W =0 (73)
or by (61)
g~ Aa = 0. (74)

Hence replacing < by = in (54) results in an s-plane zero
at

o=Aax A=0 (75)

showing that the numerical factor on the right side of (54)
cannot be increased with zeros restricted by (55). Stated
differently, evaluate (46) at the origin of the AT plane, to
yield

Gy(AT = 0) = cos co2. (76)

Clearly, this is zero if | ¢y | 2 = 7/2, and from (13) and
(15) or (53) the corresponding zero in the s plane is as
given previously in (75). For a second example, let

leolz > (7/2) (77
then (68) has a solution for
0<a<l, (78)
By (63) and (67)
W= — (1—a%) (79)
(78) yields
—-1<W<O0. (80)
From (61) and (79)
T o (1 gy 22l (81)

2] el 2|e|

Now we ean make | ¢ | z large enough to make (1 — z2)1/2
as close to 1 as we please. Hence if

| Aa |
— < ] 82
o] (82)
we can make | ¢ | 2 large enough to render
g
— >0
2]el (83)

by (82). Hence replacing < by > in (56) ean result in an
s-plane zero in the right-half plane
c>0

A=20 (84)
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if | ¢ |z is sufficiently large. This demonstrates that the
numerical factor on the right side of (56) cannot be in-
creased with zeros restricted by (57).
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Statistical Coupled Equations in Lossless Optical Fibers

BRUNO CROSIGNANI, BENEDETTO DAINO, anpo PAOLO DI PORTO

Abstract—The problem of deriving sets of statistical coupled equa-
tions for the second and fourth moments of the mode amplitudes in a
fiber with mode coupling is considered, starting from the deter-
ministic coupled wave equations describing an electromagnetic field
propagating in a lossless fiber. Our results extend the work of Mar-
cuse, and, in particular, allow one to deduce sets of equations for
quantities which describe the cross correlation between different
modes. Furthermore, we obtain new results regarding the variances
and cross correlations of the power in the modes (fourth-order am-
plitude statistics).’ ’

I. INTRODUCTION

N electromagnetic wave propagating in an optical
fiber can be described by means of a set of coupled
differential equations for the amplitudes of the modes
supported by the guide. The coupling terms are, in par-
ticular, associated with the deviations of the fiber from
the ideal structure pertaining to a regular geometrical
form and refractive index distribution. In many situations,
these imperfections are distributed in a complicated fash-
ion along the guide, so that it is difficult to determine the
spatial behavior of the coeflicients of the fundamental
equations for a given fiber, and, also, if they are known,
it is practically impossible to deduce an analytical solu-
tion.

In order to circumvent these difficulties, it is useful to
introduce a statistical ensemble of fibers possessing small
random deviations from a common ideal structure [17,
[2]. The problem is then to obtain simple equations for
the ensemble averages of quantities describing either the
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evolution of each propagation mode, or the interaction
between different modes. The perturbative approach [17,
[2] allows one to derive a closed system of equations for
the ensemble averages of the powers of the coupled modes,
also taking into account losses due to small coupling with
radiation modes.

The behavior of the variance of the power has also been
investigated [27, in the limit of a large number of coupled
modes, thus enabling one to give an estimate of the ap-
plicability of the results of the statistical theory to a single
fiber.

In this paper, we wish to introduce an analytical ap-
proach, which slightly improves the procedure followed
in [1] and [2], and allows us to obtain, for a lossless
optical fiber, in a stiaightforward way, beyond the equa-
tions for the powers, closed systems of coupled equations
for ensemble averages of products of amplitudes of differ-
ent modes. Furthermore, we obtain a closed system of
equations connecting the averages of the power squares
to those of the products of different mode powers.

As a particular application, we estimate the normalized
variance of the asymptotic power distribution, which
turns out to depend on the number of coupled modes.

II. COUPLED POWER EQUATIONS

We start from the relevant deterministic wave equa-
tions valid for the single fiber, which couple forward-
traveling guided modes and are obtained from the general
theory [4] by neglecting coupling with backward-travel-
ing modes and radiation modes. For a steady-state situ-
ation, they read

! For good sources on the treatment of stochastic equations, see
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